M1.(a) It is not actually connected to 0V ✓

OR

Operational amplifier has a very large open loop gain

The voltage between *V*_∗ and *V*_∗ inputs has to be zero [or tiny] otherwise will saturate ✓

2

(b) $V_{\text{OUT}} = -270 \text{K} / 22 \text{K x V}_{\text{IN}} = -12.3 \text{ V}_{\text{IN}}$ OR

$$V_{IN} = 50 \times 0.01 = 0.5 \text{ V}$$

$$V_{\text{OUT}} = -12.3 \times 0.5 = -6.1 \text{V}$$

2

(c) At 122 °C V_{out} = 122 x 0.01 x 12.3 = 15.0 V \checkmark so any higher temp will give no further increase in V_{out} \checkmark WTTE OR Max V_{IN} = 15.0 / 12.3 = 1.22 V \checkmark

Max input temperature = 1.22 / 0.01 = 122 °C ✓

2

(d) Level is fixed by controlling the pd at the + input)
OR

Turns off at higher temperature if V at + terminal higher \checkmark Output of the circuit is determined by $R_r / R_i(V2 - V1)$

When V1 = V2 the output changes from + to - (causing heater to switch off) ✓

[9]

M2.(a) (i) inverting (amplifier) (1)

1

3

(b) use of
$$V_{\text{out}} = (-)^{\frac{R_f}{R_t}} \times V_{\text{in}}$$
 (1)
$$= (-)^{\frac{120}{30}} \times 0.5 = -2.0 \text{ V (1)}$$

2

- (c) (i) $V_{\text{peak (input)}} = 2.0 \times \sqrt{2} = 2.8(3) \text{ V (1)}$
 - (ii) input trace (A): sinusoidal with T = 20 ms (1) and peak = 2.8 V (1)

for output voltage,
$$V_{\text{peak (out)}} = (-)^{\frac{120}{30}} \times 2.8(3) = (\pm)11.3 \text{ (V) (1)}$$

(allow C.E. for value of $V_{\mbox{\tiny peak (input)}}$ from (i)

trace B: inversion w.r.t. trace A (1) same period as trace A (1) flat region (saturates) at ± 5 V (1)

max 6

[9]